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ABSTRACT
Multimodal Learning Analytics (MMLA) has been applied to col-
laborative learning, often to estimate collaboration quality with
the use of multimodal data, which often have uneven time scales.
The difference in time scales is usually handled by dividing and
aggregating data using a fixed-size time window. So far, the cur-
rent MMLA research lacks a systematic exploration of whether and
how much window size affects the generalizability of collaboration
quality estimation models. In this paper, we investigate the impact
of different window sizes (e.g., 30 seconds, 60s, 90s, 120s, 180s, 240s)
on the generalizability of classification models for collaboration
quality and its underlying dimensions (e.g., argumentation). Our
results from anMMLA study involving the use of audio and log data
showed that a 60 seconds window size enabled the development of
more generalizable models for collaboration quality (AUC 61%) and
argumentation (AUC 64%). In contrast, for modeling dimensions
focusing on coordination, interpersonal relationship, and joint in-
formation processing, a window size of 180 seconds led to better
performance in terms of across-context generalizability (on average
from 56% AUC to 63% AUC). These findings have implications for
the eventual application of MMLA in authentic practice.

CCS CONCEPTS
• Human-centered computing → Empirical studies in collab-
orative and social computing; • Computing methodologies →
Machine learning algorithms.
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1 INTRODUCTION
Collaboration is an essential skill in the 21st Century [6]. To de-
velop this skill among students, collaborative activities are often
combined with other pedagogical approaches (e.g., project-based
learning [23]) in teaching practices. In such practices, teachers are
by default expected to orchestrate and monitor group activities
which are extremely difficult [4]. In this direction, the automa-
tion of collaboration estimation holds the potential for supporting
teachers with the development of monitoring tools [3–5, 9, 17].

There has been a growing interest in automated estimation of
collaboration [3, 17]. For example, a tool that identifies low collab-
oration quality can help the teacher identify the group that needs
support in the classroom. The development of such tools demands
capturing data from the physical space in addition to the digital
space which traditional (log-based) Learning Analytics (LA) ful-
fills only partially. To address this limitation of capturing physical
space, researchers have started employing other data sources (e.g.,
audio [25], video [23]) in addition to logs, to capture collabora-
tion more holistically. This research field that involves the use of
multiple data sources is known as MultiModal Learning Analytics
(MMLA) [2].

Earlier MMLA research works have provided preliminary evi-
dence on the feasibility of automating the estimation of collabora-
tion quality (or other aspects of collaboration) using multimodal
data (audio and logs) in face-to-face (FtoF) settings [11, 14]. This
research has been advanced by MMLA researchers, exploring a
variety of modeling techniques (e.g., Random forest [25], Adaboost
[22]) with different types of data (e.g., audio [25], eye-gaze [18],
video [23]). Furthermore, MMLA work from Olsen et al. [15] on
collaboration detection reported performance gains with the use
of multimodal data models over models built with unimodal data.
These research works’ findings suggest the use of MMLA in au-
tomating collaboration detection for FtoF settings.
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The challenges involved with multimodal data processing and
analysis, however, hinder the use of MMLA despite the aforemen-
tioned benefits. It asks researchers to make several decisions while
building automated models for collaboration behavior. These deci-
sions include a selection of data sources, data features, the type of
feature merging, the time scale (window size) on which to merge
features, modeling techniques, and model evaluation strategies.

MMLA researchers have taken a closer look at the aforemen-
tioned steps (see above) of model building to simplify the use of
MMLA. In this direction, Schneider et al. [21] and Di Mitri et al.
[7] have offered an in-depth analysis of the use of various data
sources in MMLA; Praharaj et al. [17] have provided an analysis of
multimodal features used for collaboration modeling; Mu et al. [13]
have looked into multimodal feature merging techniques; Chejara
et al. [3] have analyzed different model development and evalua-
tion techniques in MMLA. These research works, in addition to
others from the literature, provide the current state of the art in
their respective domain and thus guide MMLA researchers to make
decisions related to modeling. However, in the aforementioned
steps (see above), the decision on which window size offers higher-
performing collaboration estimation models is an under-explored
area of research.

A few MMLA research works have shown in their preliminary
analysis that the window size does impact the model’s perfor-
mance [11, 23]. However, those works only assessed the impact
in terms of the model’s performance in a single learning context1.
There is still a lack of research on the evaluation of model perfor-
mance beyond a single context (across-context generalizability) and
systematic exploration of how across-context generalizability is
affected by window sizes.

In this paper, we systematically investigate the impact of differ-
ent window sizes (e.g., 30 seconds, 60s, 90s, 120s, 180s, 240s) on
the collaboration quality estimation model’s performance across
learning contexts. This paper is structured into seven sections. We
provide related work and point out the contribution and novelty
of our work in section 2. Section 3 describes the datasets used in
our investigation. In section 4, we offer details on our data pre-
processing, machine learning model development, and evaluation
strategies. Section 5 presents the results. In section 6, we discuss
the main findings and limitations of the presented work. Section 7
concludes our work.

2 RELATEDWORK
The current MMLA research has shown a growing interest in build-
ing automated models for collaboration behavior [3, 11, 12, 16, 23,
25]. A variety of data sources have been utilized, e.g., audio [12],
video [23], eye-gaze [21], etc. (for more details refer to [17, 20]). The
use of multiple data sources has provided data with different sam-
pling rates, thus, on a different time granularity level. To bring data
from different levels of granularity to a common level, MMLA re-
searchers have used a windowing operation. This operation divides
the multimodal data into smaller chunks by a particular size of the

1Here, we consider a learning context composed of multiple aspects, e.g., particular
(groups of) students, a particular learning activity, teacher, and learning environment.
For example, if two learning contexts involve the same students, teacher, and learning
environment, but different learning activities, then these two contexts will be different
in terms of learning activity.

time window. Following the windowing operation, the aggregation
of features (either individual or group-level) using various statistics
(mean, standard deviation) is performed. For example, Martínez-
Maldonado et al. [12] used a time window of 30 seconds to segment
their dataset of audio and log data, and then aggregated the features
using mean and standard deviation.

The majority of the research into modeling collaboration has
used a window size smaller or equal to 60 seconds [1, 3, 8, 22, 25]. In
particular, a window size of 30 seconds has been used frequently by
MMLA researchers [1, 3, 22, 25]. Besides, a smaller window size of
10 seconds has been employed by Prieto et al. [18] for modeling the
social plane of orchestrating collaborative learning. On the contrary,
few research works [14, 23] have used larger window sizes of 400s
and 240s, respectively.

Some authors [11, 23] have investigated the use of several win-
dow sizes for building their collaboration estimation models. For
example, Martínez-Maldonado et al. [11] in their investigation of
three window sizes (30, 60, and 90 seconds) found that the 30 sec-
onds time window enabled the development of high-performing
models for classifying collaboration quality. Similarly, Spikol et al.
[23] investigated the role of three window sizes (120s, 240s, and
360s) and found that a window size of 240 seconds offered better
performing models in classifying group artifacts’ quality. The re-
sults of these research works suggest that the window size has
an impact on the collaboration estimation model’s performance.
Therefore, choosing an adequate window size is essential.

The current MMLA research on automating collaboration esti-
mation falls short on two fronts. First, there is a lack of research on
the systematic exploration of window size for modeling collabora-
tion quality estimation models. Second, an across contexts model
evaluation (in general and ) with the use of different window sizes
is currently absent in MMLA.

This paper, thus, sets out to analyze the impact of variouswindow
sizes (30 seconds, 60s, 90s, 120s, 180s, and 240s) on the performance
of machine learning models in classifying collaboration quality. The
heterogeneity of the resulting window in prior research also moti-
vated us to get a broader, more systematic understanding of what
window size is suitable for what dimension/aspect of collaboration
quality from a generalizability perspective. Therefore, we also de-
cided to investigate the impact of window size on the underlying
dimensions/aspects of collaboration quality as per the Rummel
et al. [19] framework. Moreover, the development of more gener-
alizable models for collaboration quality dimensions could enable
the building of automated guiding tools for teachers’ support [10].

To the best of our knowledge, this investigation of window size
impact on the classificationmodels formultiple collaboration quality
dimensions/aspects using amultimodal dataset has not been done yet.
Moreover, this impact in terms of generalizability of models is also
missing from the current research. Thus, this paper offers insights
into what window size is adequate for building more generalizable
classification models for collaboration quality and its dimensions
using multimodal datasets.

3 DATASETS
The datasets used in this study were collected as part of our pre-
vious study focusing on investigating teachers’ perspectives on
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(a) (b) (c)

Figure 1: (a) Students working on the collaborative activity in the classroom (b) Collaborative activity space in CoTrack (c) A
real-time multimodal dashboard for teachers to track monitoring students, component-1 showing activity details, component-2
showing speaking dynamics, component-3 showing controls to join group activities and component-4 showing writing activity

multimodal analytics for collaborative learning activity monitoring
and guiding [10].

3.1 Study contexts
The study took place during collaborative learning activities in
three different subject classrooms in an Estonian vocational school.
The subjects were Math, Woodwork, and Estonian language. We
treated these as three different contexts because of their variation
in multiple aspects, i.e., type of activity, teacher, classroom, and
subject. Students and teachers used the Estonian language for com-
munication. There were 12 groups of varying group sizes (e.g., 2,3,4)
and the activity duration was 45-60 minutes.

3.2 Data collection tool
The study was conducted with a tool called CoTrack2. CoTrack is a
web-based application that allows teachers to create collaborative
learning activities with monitoring functionality. It offers a collab-
orative writing space for groups to draft the solution to a given
problem together. CoTrack also records every writing activity and
students’ audio. The audio data is processed by CoTrack, allowing
extraction of data features in real-time, e.g., speaking time, turn-
taking, and speech-to-text. These features are used by CoTrack to
generate a real-time dashboard. Figure 1 shows the collaborative
learning context, student learning environment in CoTrack, and
teacher’s dashboard.

3.3 Activity tasks
The study was conducted in Mathematics, Woodwork, and Estonian
language classroom sessions. For the Mathematics classroom, the
collaborative activity involved solving a set of geometric problems.
Each group was given a similar set of problems but with differ-
ent measurements. For example, one problem for group 3 was to
calculate the perimeter and area of a rectangle with a diagonal
of 84 cm forming an angle of 25 degrees with a larger side. The
task for Woodwork involved a hypothetical situation of a person,
Steve, who needed to renovate a particular portion of his house
(exterior facade, bathroom, and room). The groups were given a
map of the house with measurements of each wall as well as the
floor. The groups were asked to first prepare a list of tools and
2https://www.cotrack.website

materials needed to complete the renovation. The groups were also
asked to discuss the estimated cost of labor and materials, and pre-
pare the final document with all details for Steve. The task for the
Estonian language learning involved preparing a presentation in
the group on one of the epic3 topics (e.g., Gilgamesh, Song of my
Cid). The groups were given instructions on the content to put in
the presentation, e.g., describe the main characters, and summarize
the central story of the epic. At the end of the session, the groups
were asked to present in front of the class.

3.4 Procedure
We designed all three collaborative learning activities beforehand
for the research study. A researcher from educational science and
the concerned teacher were involved in the learning design. The
same researcher was present during the enactment of the study in
the classroom and briefed the students about the purpose of the
study. The consents were taken from the students (consents were
taken before from the parents in case of students younger than
18 years). Students were grouped by the teacher and then asked
to complete the given activity. Each student had a laptop and a
microphone for the activity (see Figure 1a).

3.5 Features
We extracted speaking time and turn-taking from audio using the
Voice Activity Detection algorithm which detected voice activity
every 200 ms. These features (e.g., speaking time) are found to
be predictors of collaboration quality in MMLA [11, 16, 17]. From
speech data, we extracted the frequency of “I” and “we” (as in [24])
and the wh-words, all in Estonian. From writing logs, we extracted
the number of characters written or deleted by group participants.
We further took the average and standard deviation for each ex-
tracted feature to compute group-level features.

4 METHODS
4.1 Annotation
We used a rating scheme from [19] to obtain the ground truth of
collaboration quality and its underlying dimensions. This rating

3Oxford definition: a long poem about the actions of great men and women or a
nation’s history

https://www.cotrack.website
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Figure 2: Model development process

scheme assigns scores on a 5-point scale (i.e., -2,-1,0,1,2) for seven
dimensions of collaboration quality. These dimensions are argumen-
tation, sustaining mutual understanding, cooperative orientation,
structuring problem solving and time management, individual task
orientation, knowledge exchange, and collaboration flow. The inter-
rater reliability score (Cohen’s Kappa >.60) was at a substantial
level for all seven dimensions of collaboration quality. We added all
seven dimensions’ scores and averaged them to compute a measure
of collaboration quality following prior research work in MMLA
(e.g.,[12]).

4.2 Dataset generation for different window
sizes

We used a rolling window operation, following [12], to generate
datasets with window sizes of the 30s, 60s, 90s, 120s, 180s, and 240s.
As the annotation was done for every 30s, we merged labels in the
following manner: we assigned a final label of ’High’ if 50% or more
labels of the same were observed in windows under rolling oper-
ation. For example, consider three consecutive 30s windows with
labels4 High, Low, Low; for generating a dataset for 60s window
size, the rolling operation took the first two labels and merged them
into a label of High; while for the 90s dataset, the final label was
Low.

4.3 Model development
Figure 2 shows our model-building process involving data collec-
tion, feature extraction, segmentation by different window sizes,
training classification models, and then evaluating the developed
models. We employed the random forest algorithm to build5 clas-
sification models for collaboration quality and its dimensions. We
decided to use the random forest algorithm for two reasons: first,
this algorithm has been found to achieve high performance in the
field of MMLA [1, 18, 25]; second, we also found the random forest
to achieve comparatively better performance in estimating collabo-
ration quality and its dimension [3].

For model evaluation, we used 10-fold cross-validation (CV) and
leave-one-context-out [3]. The first evaluation scheme divided the
datasets into 10 equal portions, using 9 portions for training and 1
for testing. This process is iterated 10 times with the selection of a
different portion for testing. In educational terms, the 10-fold CV

4For 30s window size, we mapped scores below or equal to zero as ’Low’ otherwise
’High’.
5Source code: https://github.com/pankajchejara23/Time-window-size-impact-on-
model-performance

assesses how well a model predicts a situation from the same set of
contexts it has been trained on which is unrealistic in practice (i.e.,
in practice every classroom activity will be in a different context
as per our definition). Thus, it offers a measure for within-context
generalizability. On the contrary, in leave-one-context-out, datasets
from two contexts were used for training and other for testing.
This was iterated three times. This evaluates the models for their
generalizability to a different learning context which has never
been seen by the model before. Thus, it provides a measure of
across-context generalizability that is more relevant to MMLA, i.e.,
after the model is put into practice, it will see a completely different
context each time it is used in the classroom by teachers.

We report the results of models’ performance in terms of Area
Under the ROC Curve (AUC) which takes into account true positive
rate and false positive rate. The AUC scores range from 0 to 1 which
we scaled between 0 and 100% with 0 representing a model making
all wrong predictions and 100% when the model makes all correct
predictions. An AUC score of 50% represents chance performance.

5 RESULTS
Table 1 presents the AUC score of random forest classifiers for
collaboration quality and its dimensions, evaluated with a 10-fold
CV and leave-one-context-out. On 10-fold CV, the classification
models on average improved their performance from 64% AUC to
89% AUC when developed with the 30s and 240s window sizes,
respectively. All the developed models achieved their highest per-
formance or within-context generalizability with the use of a 240s
window size. In particular, models of collaboration flow, collab-
oration quality, and sustaining mutual understanding performed
comparably higher (AUC score 91%) than other models with a 240s
window size. On contrary, the structuring problem solving6 model
achieved the lowest AUC score (87%) with a 240s window.

In across contexts evaluation, on average, models achieved their
lowest performance at 30s window size (AUC 56%) and highest at
180s window size (AUC 63%). These results showed a steep degra-
dation in the model’s across-context generalizability compared to
their within-context performance. Besides, the use of different win-
dow sizes led to higher performance for models of collaboration
quality and its dimensions. For example, the argumentation model
and collaboration quality model achieved their highest across con-
texts performance of 64% and 61% AUC scores, respectively, with a
60s window size. While classification models for collaboration flow,

6Referring to structuring problem solving and time management
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Table 1: Random forest model’s performance within and across contexts (AUC scaled in the range of 0-100%)

Target Within-context Across-context
30s 60s 90s 120s 180s 240s 30s 60s 90s 120s 180s 240s

ARG 61 (4) 69 (5) 71 (3) 76 (5) 85 (4) 88 (3) 57 (6) 64 (6) 62 (5) 60 (5) 61 (7) 59 (7)
CF 65 (5) 70 (4) 74 (6) 77 (3) 86 (4) 91 (2) 56 (5) 60 (4) 61 (4) 63 (7) 64 (6) 62 (7)
CO 66 (5) 70 (5) 74 (6) 78 (3) 86 (4) 91 (3) 56 (5) 62 (4) 60 (4) 62 (10) 65 (7) 62 (6)
CQ 65 (6) 70 (5) 71 (7) 76 (5) 81 (6) 88 (4) 55 (4) 61 (5) 57 (3) 59 (6) 60 (6) 58 (6)
ITO 64 (6) 69 (5) 73 (4) 76 (4) 85 (3) 90 (2) 61 (2) 60 (4) 62 (5) 61 (6) 62 (6) 62 (6)
KE 64 (5) 69 (6) 74 (5) 75 (4) 84 (4) 90 (3) 60 (4) 59 (5) 64 (9) 63 (9) 65 (7) 64 (6)
SPST 65 (7) 65 (6) 69 (6) 73 (2) 83 (4) 87 (4) 55 (3) 64 (7) 62 (7) 60 (6) 66 (7) 61 (3)
SMU 64 (5) 70 (4) 74 (4) 80 (3) 86 (4) 91 (3) 55 (4) 60 (4) 60 (6) 62 (8) 65 (8) 67 (10)

64 69 72 76 84 89 56 61 61 61 63 61
ARG: Argumentation, CF: Collaboration flow, CO: Cooperative orientation, CQ: Collaboration quality, ITO: Individual task orientation, KE:

Knowledge exchange, SPST: Structuring problem solving and time management, SMU: Sustaining mutual understanding

cooperative orientation, knowledge exchange, and structuring prob-
lem solving dimensions, achieved a higher AUC score (64%, 65%,
65%, 66%, respectively) for a window size of 180s. For sustaining mu-
tual understanding, the model showed a higher performance (AUC
67%) at a 240s window size, but with comparably high variation.
The classification model for individual task orientation showed the
most stable performance (60% to 62%) across different window sizes
in comparison with other dimension models. It achieved an AUC
score of 62% with minimal variation on the 90s window.

6 DISCUSSION
We present here the main findings from our study and their impli-
cations for the MMLA research community.

6.1 Main findings
A larger window size of 240 seconds seems better for build-
ing classification models for collaboration quality and its
dimensions when the goal is to use the models on contexts
very similar to the one’s model was trained on.
On 10-fold CV, our results showed that having a larger window size
of 240s for data segmentation helps the model to achieve higher
performance. In educational terms, however, it only indicates that
the models will achieve similar results if performed on data coming
from the same learning contexts. This is highly unlikely because
each time a model is applied, it will see a different context (as per
our aforementioned criteria of contextual differences). Neverthe-
less, the results from the 10-fold CV allow the researcher to see
how well a model fits the data and also help in understanding the
predictive power of used features. Therefore, our results suggest
the use of the 240s window size if the goal of developing the model
is to understand the feature importance for a particular context
towards collaboration prediction.

A window size of 60 seconds seems better for building
more generalizable collaboration quality and argumentation
classification models.
Our results showed that a window size of 60 seconds is better than
other window sizes for building more generalizable models for col-
laboration quality (AUC 64%) and argumentation dimension (AUC
61%). These results are consistent with Chounta and Avouris [4]

work from Learning Analytics on developing classification mod-
els for collaboration quality and its dimensions using log-based
features (e.g., number of chat messages). Their work found a 60
seconds window size better for modeling collaboration quality. Our
finding on the collaboration quality model, however, is discordant
with Martínez-Maldonado et al. [12] research work in which a 30s
window size was found as a better window size (compared to 60s
and 90s) for building a collaboration quality model on the 10-fold
CV. Their work, however, did not assess models for across-context
generalizability. The differences could be further explained by the
type and time duration of collaborative learning activity. Martínez-
Maldonado et al. [12] investigated groups, performing a job sched-
uling task using a specific software requiring them to interact using
a mouse. The activity duration in their case was comparatively
shorter than ours (17 minutes < 45-60 minutes).

A window size of 180s/240 seconds seems better for mod-
eling collaboration flow, knowledge exchange, cooperative
orientation, structuring problem solving, and sustaining mu-
tual understanding dimensions.
Our results showed that the classification models for collaboration
flow, knowledge exchange, cooperative orientation, and structuring
problem solving dimensions performed comparably better across
contexts when using a window size of 180s. These four dimensions
cover three aspects of collaboration quality: joint-information pro-
cessing, interpersonal relationship, and coordination [19]. These
aspects are complex to understand and also require the qualita-
tive aspect of students’ interaction [4]. However, our features were
mainly quantitative and included very simple speech features (e.g.,
frequency of ‘Ma’). For the sustaining mutual understanding (SMU)
dimension, our models with 240s window size datasets achieved
high performance compared to other window sizes. This perfor-
mance gain with a larger window size (180s/240s) could be ex-
plained by the sparsity of our features (e.g., turn-taking) for smaller
window sizes which might have been addressed with the use of a
larger window size, allowing the model to learn effectively. Our
finding on cooperative orientation and structuring problem solving
dimensions (i.e., 180s window size) is consistent with Chounta and
Avouris [4] research.
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Awindow size of the 90s or 180s seems better for modeling
the motivation aspect of collaboration quality.
In the case of individual task orientation, the models achieved the
most stabilized performance across all window sizes, achieving
higher performance on the 90s window size and 180s window size
(AUC score 62%). This stabilized performance indicates that the
changes in window size do not have a significant impact on the
performance of the classification model for individual task orienta-
tion. Thus, a smaller or larger window size could be appropriate
for modeling the motivation aspect of collaboration quality.

Need for more across contexts model evaluation in MMLA.
Our results showed that models in general performed very well,
achieving an average score of 89% AUC in 10 fold-CV (with 240s
window size). However, this performance deteriorated when the
same models were evaluated across contexts. This highlights the
shortcomings of the frequently employed K-fold CV in MMLA [3]
and raises the need to perform a stricter evaluation across contexts.
This relates to the evaluation framework proposed in MMLA, sug-
gesting multi-level (e.g., across groups, contexts) generalizability
evaluation [3]. There is a need to assess models for across-context
generalizability, inMMLA as well as in LA, to enable the community
to gain an understanding of how far are we from production-ready
models.

6.2 Limitations and future work
The present study has five main limitations. The first limitation is
the small dataset size. Even though the datasets were collected from
three different contexts, theywere limited in activity types, teachers,
education level, and activity duration. This limits the generalizabil-
ity of our findings due to a very narrow scope of explored contexts.
The second limitation is related to the data used. We mainly utilized
datasets of audio and log files for modeling purposes. Other types
of data (particularly high-frequency sensors) may result in different
window sizes. The third limitation is the use of a particular machine
learning technique. We used a random forest classifier for modeling
collaboration quality and its seven dimensions. There is a possi-
bility that different window sizes than the ones we recommended
might be optimal for building high-performing models with the
use of other machine learning techniques. The fourth limitation is
with our use of a majority voting approach for merging labels for
window size larger than 30s. This approach may affect class bal-
ance, e.g., a rare occurrence of ’Low’ when aggregated for a larger
window size become even rarer. The fifth limitation is with our
criteria for defining learning context. It is debatable what defines
learning context, thus, further exploration is needed.

In our future work, we plan to run the study with a larger dataset
from a wider range of learning contexts (e.g., different tasks, edu-
cation level, time duration, teacher, etc.). We will also utilize other
machine learning techniques (e.g., AdaBoost) to develop models and
investigate how their performance will be affected by the change
in window size. We will also explore other label aggregation tech-
niques for merging labels. We then envision the development of
an automated guiding system to support teachers in interventions
with the help of developed classification models for collaboration
quality and its dimensions.

7 CONCLUSION
Our paper fills a gap in MMLA research about the window size that
enables the development of more generalizable classificationmodels
for collaboration quality. We analyzed three audio-log multimodal
datasets and developed random forest classifiers for collaboration
quality and each of its dimensions using different window sizes
(30 seconds, 60s, 90s, 120s, 180s, 240s). The results showed that
a 60s window is better suited to modeling collaboration quality
and argumentation dimension. For dimensions including collabora-
tion flow, knowledge exchange, sustaining mutual understanding,
cooperative orientation, and structuring problem solving, we sug-
gest a large size window of 180s/240s. This paper contributes to
the community’s knowledge by offering guidelines that can help
in developing not just high-performing models but also models
generalizable across contexts. We also highlight the need for more
across-context evaluation which we hope will help the MMLA com-
munity to bridge the gap between MMLA research and practice.
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